Harnessing NK cell functions in settings of infections and disease

Amir Horowitz, PhD Assistant Professor Department of Oncological Sciences Precision Immunology Institute Tisch Cancer Center Icahn School of Medicine at Mount Sinai

> 12 October 2017 MetroFlow annual meeting

NK cell activation is regulated by the collective strength of inhibitory and activating signals

NK cell functions are coordinated across specialized subsets -Example: Viral infection

NK cell functions are acquired, regulated and differentiated as NK cells mature

Cichocki, 2013 Front Immunol

Education is regulated by a bipartite system of Immunogenetics

Adapted from: Parham, 2012 Phil. Trans. R. Soc. B; Horowitz, 2016, Sci Immunol.

Robinson, 2017 *PLoS Genetics* (IPD: Up to date list of HLA alleles)

HLA-A, -B and –C contribute leader sequence-derived peptides to HLA-E

VIVAPPRILLUL (~80% of HLA-B alleles)

KIR ligands on HLA class I are distributed differently across human populations

Parham and Moffett, 2013 Nat Rev Immunol

HLA-A alleles are differentially transcribed, but HLA-B alleles are uniformly transcribed

Bw4 Allele

DT9 antibody distinguishes between alleles of HLA-C and demonstrates differential expression

Apps, 2013 Science Apps, 2016, Cell Host Microbes Horowitz, 2015 J Immunol Horowitz, 2016 Science Immunology

KIR genes diversify both in gene content as well as organization on a haplotype

KIR gene	3DL3	2DL4	2DL5	3DL1/3DS1	3DL2	2DL1	2DL2/2DL3	2DS1	2DS2	2DS3/5	2DS4	2DP1	3DP1
Alleles	111	52	48	110/30	112	48	30/55	16	22	15/18	31	28	27
Allotypes	57	28	20	66/17	82	28	13/31	8	8	6/12	14	0	0
Ligand	?	G?	?	Bw4	A3/11	C2	C1/c2	C2	A11?	?	A11	exC1/C2	NA

Guethlein, Immunol Rev, 2015

Immunogenetics and environment determine the extent of diversity of NK cells

RESEARCH ARTICLE

IMMUNOLOGY

Genetic and Environmental Determinants of Human NK Cell Diversity Revealed by Mass Cytometry

Amir Horowitz,^{1,2,3} Dara M. Strauss-Albee,^{3,4} Michael Leipold,² Jessica Kubo,⁴ Neda Nemat-Gorgani,¹ Ozge C. Dogan,⁴ Cornelia L. Dekker,⁵ Sally Mackey,⁵ Holden Maecker,² Gary E. Swan,⁶ Mark M. Davis,^{2,3} Paul J. Norman,¹ Lisbeth A. Guethlein,¹ Manisha Desai,⁴ Peter Parham,^{1,2,3} Catherine A. Blish^{3,4}*

Science Trans Med, 2013

Single Cell Analysis - CyTOF[™] Machine

Mass Cytometry: Surface Panel

Surface phenotyping panel:	Activating Receptors	Inhibitory Receptors
	KIR2DS1	KIR2DL1
	KIR2DS2	KIR2DL2
Lineage Markers	KIR2DS4	KIR2DL3
CD3	KIR2DL4	KIR2DL5
(Vδ2)TCR-γδ – T cells	KIR3DS1	KIR3DL1
CD4/CD8 —	CD2	LILRB1 (ILT-2)
CD33 — Myeloid cells	CD16	CD94/NKG2A
	CD27	CD161
CD56 CD56	CD56	
CD19 — B cells	CD57	NK Development
CCR7 — LN homing	CD94/NKG2C	
HLA-DR — Mθ, DCs, B cells	NKG2D	CD34 CD117
	CD7	CD117 CD122
	HLA-DR	CDIZZ
MHC — All PBMC	NKp30	
HLA-C (DT9)	NKp44	N 29 markara
HLA-E (3D12)	NKp46	N = 20 markers
	2B4	
Live/Dead		
Cisplatin		

N = 40 markers

Mass Cytometry: Intracellular / Functional Panel

Functional/ICS panel:

Lineage Markers		Activating Receptors	Inhibitory Receptors
CD3		KIR2DS1	KIR2DL1
(Vδ2)TCR-γδ	- T cells	KIR2DS2	KIR2DL2
لس CD4/CD8		KIR2DS4	KIR2DL3
CD33 —	Myeloid cells	KIR2DL4	KIR2DL5
CD16		KIR3DS1	KIR3DL1
CD56	Nix cells	CD2	LILRB1 (ILT-2)
CD19 —	B cells	CD16	CD94/NKG2A
HLA-DR	Mθ, DCs, B cells,	CD27	CD161
		CD56	
Cytokines/	Upon	CD57	Exhaustion
<u>Chemokines</u>	activation	CD94/NKG2C	CTLA-4
IFN-γ		NKG2D	PD-1
TNF-α		CD7	TIGIT
ΜΙΡ-1β		HLA-DR	Tim-3
CD107a		NKp30	
Granzyme B		NKp44	
GM-CSF		NKp46	
PLZF		2B4	
Eat-2	Live/Dead	CD122	
Syk	<u>Live/Dedu</u>		
Fc εRIγ	Cispialiii		N = 42 markers

Boolean gating: 'logics' equations based on "AND", "OR" and "NOT" for sorting cells based on phenotypes and functions

Question: If clustering on 28 markers, how many possible phenotype combinations can be predicted?

 $2^{28} = 268,435,456$

Boolean gating reveals thousands of phenotypes

- These top 50 subpopulations account for only 15% of the total NK cells
- Sampled between 6,000 25,000 unique phenotypes/donor
- Sampled ~125,000 unique phenotypes across all donors

Horowitz, Sci Transl Med, 2013

Genetics vs Environmental determinants of repertoire diversity

Β

Horowitz, Sci Transl Med, 2013

Population analyses of HLA class I: Alleles of HLA-A, -B and -C segregate in human populations to modulate education through HLA-E

C2+*HLA-C* and -21M *HLA-B* alleles segregate on different HLA haplotypes in Eurasian populations

5,439 haplotypes

	Proportion of total HLA B-C haplotypes (%					
Population	HLA-C2			HLA-C1		
group	HLA-B -21M	HLA-B -21T		HLA-B -21M	HLA-B -21T	
African	0.13	0.39		0.13	0.36	
European	0.01	0.39		0.27	0.33	
Asian	0.01	0.18		0.19	0.61	
Australian	0.0	0.56		0.05	0.39	
Oceanian	0.0	0.25		0.22	0.53	
North American	0.0	0.36		0.21	0.40	
South American	0.0	0.35		0.31	0.35	

Five HLA-B -21M — C2⁺HLA-C haplotypes							
Haplotype group	Haplotype	Population group	Group characteristics				
I	B*42:01 C*17:01 F	Africans	African-specific HLA-B and HLA-C alleles African-specific HLA-B allele and widespread HLA-C allele				
III	B*73:01 C*15:05 B*07:05 C*15:05 B*07:05 C*15:05 C*15:05	Asians	All or part of the haplotype arising by introgression from archaic humans				

10,945 haplotypes

<u>Hypothesis</u>: -21M/T dimorphism divides HLA haplotypes into <u>two</u> schools of education:

- One biased to providing CD94:NKG2A ligands
- One biased towards providing KIR ligands

-21 HLA-B genotype correlates with cell-surface expression of HLA-E

HLA-A and HLA-E expression correlates with HLA-B -21 amino acid variation

HLA-B -21 varia

- M/M
- M/T
- T/T

Horowitz, 2016 *Science Immunology* Ramsuran*, Naranbhai*, Horowitz, *In revision*

Why are the two most polymorphic genes in our genome cooperating to regulate expression on a very conserved gene?

Visual tools for reducing data dimensionality are critical!

<u>Spanning-tree Progression Analysis of Density-normalized Events</u> (SPADE): *requires transformation to reveal informative patterns*

SPADE analysis built on:

~20,000 CD94:NKG2A⁺ NK cells from 60 donors Cluster size range: 1-163 cells per cluster

Transforming SPADE trees into 'Immune fingerprints'

SPADE reveals greater diversity in the CD94:NKG2A⁺ NK repertoire in individuals with -21M HLA-B

-21M HLA-B correlates with increased levels of inhibitory NK receptors on CD94:NKG2A⁺ NK cells

-21M HLA-B correlates with increased proportion of adaptive CD94:NKG2A⁺ NK cells

-21M HLA-B correlates with increased sensitivity to signaling through FcγRIIIA

-21M HLA-B correlates with increased sensitivity to signaling through IL-2/15R β

HLA-A and HLA-E expression correlates with direction of education and breadth of activation

Low dose α-CD20 Ab [2.5μg/ml]

- M/T
- T/T

When can a protective response turn bad?

Examples of autoimmune and immune-related adverse events associated with cancer immunotherapies and NK cells

Differential effects of Immune checkpoint blockade on T cells at different stages of differentiation/localization

June, Warshauer & Bluestone 2017 Nat Medicine

Potential mechanism of epitope spreading promoting autoimmunity

June, Warshauer & Bluestone 2017 Nat Medicine

NK cell exhaustion: A potential mediator of immune dysregulation and autoimmunity

Nina Bhardwaj, MD, PhD

Elena González-Gügel, PhD

Adam Farkas, PhD

Melanoma patients <u>up</u>regulate inhibitory receptors, which may function similar to checkpoint inhibitors

Di Silva 2014 Cancer Immunol Res

Melanoma patients <u>down</u>regulate activating receptors, decreasing sensitivity to tumor target cells

Di Silva 2014 Cancer Immunol Res

Melanoma patients display reduced sensitivity to IL-2 as well as activation and proliferation

Loss-of-function screening identifies target that increases efficacy of immunotherapy

ARTICLE

doi:10.1038/nature23270

In vivo CRISPR screening identifies *Ptpn2* as a cancer immunotherapy target

Robert T. Manguso^{1,2,3}, Hans W. Pope^{1,3}, Margaret D. Zimmer^{1,3}, Flavian D. Brown^{1,2}, Kathleen B. Yates^{1,3}, Brian C. Miller^{1,3,4}, Natalie B. Collins^{1,3,5}, Kevin Bi^{1,3}, Martin W. LaFleur^{1,2}, Vikram R. Juneja⁶, Sarah A. Weiss¹, Jennifer Lo⁷, David E. Fisher⁷, Diana Miao^{2,3}, Eliezer Van Allen^{2,3}, David E. Root³, Arlene H. Sharpe^{5,8}, John G. Doench³ & W. Nicholas Haining^{1,3,5}

*Study did not report on treatment-related toxicities or autoimmunty assoicated with knocking down MHC-E!

Acknowledgements

Stanford University:

Peter Parham

Paul Norman Lisbeth Guethlein Zakia Djaoud Neda Nemat-Gorgani Hugo Hilton Jeroen Blokhuis

Stanford HIMC:

Holden Maecker Michael Leipold

University of Oslo:

Karl-Johan Malmberg

Ragon Institute / NCI:

Mary Carrington Bruce Walker Vivek Naranbhai Veron Ramsuran

Mount Sinai: Miriam Merad **Adeeb Rahman** Nina Bhardwaj Seunghee Kim-Schulze

Elena Gonzalez-Gugel Adam Farkas Robert Sebra Melissa Smith Wissam Hamou Kimaada Allette MetroFlow Thank you!

Contact:

amir.horowitz@mssm.edu

Funding:

